CAR28T 毫米波雷达 应用手册

湖南纳雷科技有限公司

免责声明

欢迎您选购本产品。纳雷科技公司官网 <u>www.nanoradar.cn</u>有 CAR28T 的专题网页, 您可以通过该页面获得最新的产品信息及应用手册。应用手册如有更新, 恕不另行通知。

任何用户在使用本产品前,请仔细阅读本声明。一旦使用,即被视为对本声明内 容的认可和接受。请严格遵守手册安装与使用该产品。如有不正当的使用,而造 成的损害或损伤,纳雷科技不承担相应的损失及赔偿责任。

本产品为纳雷科技版权所有。未经许可,不得以任何形式复制翻印。使用本产品 及手册不会追究专利责任。

版本历史

日期	版本	版本描述
2017-05-15	2.0	CAR28T 应用手册第二版本
2017-11-02	2.1	修改安装示意图

1	CAR	28T 简介	1
2	产品	使用注意事项	1
3	发货	清单	2
4	快速	使用指南	2
	4.1	连接线安装	2
	4.2	CAR28T 安装及坐标系统	3
	4.3	测试使用	3
	4.4	修改雷达 ID	9
	4.5	产品在线固件升级	12
5	CAN	「口数据解析	12
	5.1	CAR28T 配置(Sensor Configuration)	13
	5.2	雷达返回(Sensor Feedback)	16
	5.3	雷达状态信息(Radar Status)	17
	5.4	目标输出状态(Target Status)	18
	5.5	目标输出信息(Target Info)	19
6	数据	解析示例	20
7	安装	及风险须知	21
	7.1	安装原则	21
	7.2	使用风险须知	22
8	常见	问题(FAQ)	22
9	参考	文献	23

目 录

Ι

1 CAR28T 简介

CAR28T 是业界一款轻巧的 24GHz 车载毫米波雷达传感器,利用发射的无线 电波与接收回波差准确的测量目标距离、速度、角度等信息。

CAR28T 体型小巧(96×58×24mm)、测量距离远(30米)、性能领先、性价比高、 集成的外设接口(CAN 接口),具有 BSD/LCA 功能,可以满足急剧增长的汽车工 业安全辅助驾驶需求。

图 1 CAR28T 轮廓图

Note:

默认情况下, CAR28T 不带连接线。如需要, CAN 配线为4芯 RVV线,长1米。

2 产品使用注意事项

"注意事项"很重要,应引起重视。

- (1) 安装时模块天线面(平整面)面对探测区域,且不要被任何金属物体覆盖;
- (2) 务必在室外开阔场地进行测试。

若在安装使用过程中遇到无法解决的问题,请联系纳雷科技客服人员,我们 竭诚为您服务!

3 发货清单

发货清单包括: CAR28T 传感器 1x(如图 2),连接线 1x(如图 3)。默认情况下, 发货时,不带连接线,如有需要,请找客服单独购买。

图 2 CAR28T 实物图

图 3 CAR28T 连接线

Note: CAR28T 可使用 4 颗 M2.5 螺丝或魔力贴固定。

4 快速使用指南

4.1 连接线安装

CAR28T 详细接口定义(配置连接线)如下表所示:

表	1 CAR28T	引脚定义
---	----------	------

序号	定义	范围	线缆颜色
1	CAN_H	-58~58V DC	黄
2	CAN_L	-58~58V DC	白
3	GND		黑
4	POWER IN	6~32V DC	红

CAN28T 引线说明如下图:

图 4 CAR28T 引脚说明(无连接线)

4.2 CAR28T 安装及坐标系统

在汽车盲点检测及相关应用中,CAR28T 安装距地面需有 400~1000mm 的高度, 雷达天线面与车身截面形成 25° 夹角。安装示意图如下图:

图 5 模块后向安装示意图

安装所需参数如下表:

	最小值	典型值	最大值	参数释义
α	23°	25°	27°	方位角
β	-1°	0°	1°	俯仰角
Δx	0mm	10mm	50mm	与车后端距离
Δy	20mm	50mm	150mm	与车侧边距离
H_z	400mm	500mm	1000mm	距离地面高度

表 2 模块安装位置参数表

Note:

雷达安装请注意区分左右,雷达背面标签"L"安装在车辆左侧,雷达背面标签"R"安装在车辆右侧。注意雷达白色接头统一朝里,切勿接反。雷达天线面要注意避开车辆后保险杠上的走线以及不规则突起块。

CAR28T 测试的目标角度为方位角,目标距离为径向距离(直线距离),当目标靠近雷达传感器时速度为负值,目标远离传感器时速度为正值。

4.3 测试使用

纳雷科技提供的《SRR_Test》测试软件可获取并解析 CAR28T 传感器数据, 直观的显示观测结果,利用该工具有助于使用 CAR28T 传感器。

首先从纳雷客服获取纳雷科技毫米波雷达 SRR_Test 压缩包(上位机测试软

件)、使用手册、USBCAN 盒子与驱动。依据使用手册,安装与配置上位 机测试软件。

Note:

1)BSD 功能测试时,需要雷达安装在汽车后方保险扛附近位置,车辆启动时 进行测试。

2)《SRR_Test》使用如下图 7 所示 USBCAN 适配器与 CAR28T 通信,目前 不支持其他类型的 USB2CAN 适配器,发货清单默认不包含 USBCAN 适配器。 客户可以向纳雷客服获取 CAN 适配器链接地址自行购买,纳雷也可帮助客户进 行代购。

图 6 测试用 CAN 盒子

测试步骤如下:

1) 测试使用工具或软件如下:

衣 5) 印则以使用工具						
序号	设备名称	数量				
1	CAR28T 传感器	1				
2	PC 机	1				
3	连接线	2				
4	12V 直流电源	1				
5	上位机测试软件	1				
6	USBCAN 盒子	1				

表 3 产品测试使用工具

2) 通过 USBCAN 适配器,连接 PC 与 CAR28T 雷达传感器,连接示意图如下:

图 7 CANBUS 连接测试示意图

Note:

CAR28T 接通 12V DC 电源后, USBCAN 盒子的绿灯(POWER)会持续亮灯, CAR28T 正常工作时,黄灯会持续闪烁。

3) 打开 CANMonitor 驱动,并按要求配置,界面如下图。

设备类型(T) 设备操	fr(F) 编辑(E) 查看(V) 帮助(H)						
	* 🖬 🍳	🛃 💻	1 🔿	<u></u>	2			
CAN通信操作	CAN1 帧类型:标准帧	▼ ¢ģID: Ox	00000000	帧数据:	00 01 02	03 04 05 06 07	(Hex)	发送
	▲▲▲ ▲▲ ▲●	▼ 发送次数:	1 次	发送周期:	: 0	ms		停止
启动CAN2 复位C/	un2 帧类型:标准帧	▼ 帧ID: Ox	00000000	帧数据:	00 01 02	03 04 05 06 07	(Hex)	发送
	帧格式: 数据帧	_ 发送次数:	1 次	发送周期:	: 0	ms		停止

图 8 CANMonitor 界面

点击左上角绿色按钮,如下图,不用修改下图中任何参数,点击确定按钮。

CANMonitor - USBCAN1		
设备类型(T) 设备操作(F) 编辑(E) 查看(V) 帮助(H)		
🙋 🔲 🥑 💥 🔒 🖻 💆 💻	「コ 🔊 🏠 🥝	
CAN通信操作 CAN1 启动CAN1 夏位CAN1 ● 林松宇・秋田福祉 1 安洋 次考	x 000000000 帧数据: 00 01 02 03 04 05 06	07 (Hex) 发送
属性设置		ABIP I. I
设备素引号: 0		
CAN1初始化参数	CAN2初始化参数	
CAN波特率: 500Kbps ▼ BTR0: 00	CAN波特率: 1Mbps -	BTR0: 00
□ 自定义波特率 BTR1: 14	□ 自定义波特率	BTR1: 14
起始ID: 0× 00000000 终止ID: 0× 000	0100 起始ID: 0× 00000100	终止ID: 0× 00000200
□ 启动接收滤波器 工作模式. 正常	▶爰 ▼ □ 启动接收滤波器	工作模式: 正常收发 🗸
确定	取消	
		1
献法	R1:0 T1:0 R2:0 T2	:0 C1:0.0% C2:0.0%

图 9 设备属性设置界面

如果出现打开设备失败提示,请检查 CAR28T 是否正确连接电脑。

					10-10-10-10-10-10-10-10-10-10-10-10-10-1	劉	雷 科	Ŧ
CANMonitor - USBCAN1								3
设备类型(T) 设备操作(F) 编辑(E)	查看(V) 帮助	(H)						
🙋 📰 🥑 💥 🔒	Q 🚺	I	a 😚	2				2
CAN通信操作 合动CAN1 复位CAN1 帧类型: 限	示准帧 ▼ 帧	ID: 0x 000000	00 帧数据:	00 01	02 03 04 05 06 0	7 (Hex)	发送	
设备属性设置		医次到:11	// 友任問題	H: 10			-10-11-	
设备索引号: 0 ▼ CAN1初始化参数		CANIN	onitor M	治化参	数			
CAN波特率: 500Kbps ▼ B	TRO:	00	onitor	i事:	1Mbps 💌	BTR0:	00	
□ 自定义波特率 B	TR1:	14 \$127	x首天败!	又波特	串	BTR1:	14	
起始ID: 0× 00000000 約	ধLID: 0×	00100	确定	0×	00000100	终止ID: 0;	< 00000200	
□ 启动接收滤波器 1	作模式:	正常		接收社	送波器	工作模式:	正常收发	•
L	櫴	定		取	消			
	49 	12			č.			
								E
								84
就绪			R1:0	T1:0	R2:0 T2:0	C1:0.09	6 C2:0.0%	

图 10 打开设备失败界面

如若正确连接,点击启动 CAN1 按钮,雷达与目标存在相对运动时,命令行 中会出现 0x70C 序列,否则表示连接或安装不正确,请检查安装和连接。

CANN	Ionitor	- USBC	AN1								
设备类型	(1) 设	备操作(F) 编辑(E) 査吾(V) 帮助(H)						
				Q	F a	Л	2 🐔	2			
- CAN) <u>用</u> 信	操作		CAN1	オテン体曲点	- datu:	- 10000000	ne####	₹. [07	01 02 03 04 05 06 07	(Herr)	
启运为CA	un Ţ	[<u> </u> ☆Can1	帧格式:	· 数据帧	 ■ 「★」 ▼ 发送次数 	t: 1	- 次 发送服	日. 0 副期:0		Quex /	<u>友広</u> 信止
			CAN2	大学生の点				₽• [00	""s	(Hay)	45.92
启动CA	AN2 1	[(☆CAN2	帧格式:	数据帧	 ■ 10000 ■ 发送次数 	t: 1	- 次 发送周	ロ・ の 朝期: 0		Quen /	<u>友达</u> 値止
	12.44.0	(actual)				4546 776	4115.0	1			19-AL
序列	通道号	时间标	till (ms)	传输方向	● 响ID (Hex)	帧类型	· 翰格式		Hex)		^
000843	0	001669	9718.2 9718.5	接収	00000700	标准则	多项3档中贝 末始3层内占	08		90	
000845	ŏ	001669	9718.7	接收	00000708	标准帧	数据响	08	01 02 00 00 00 00 00	00	
000846		001669	9719.0	接收	0000070C	标准帧	数据帧		01 DB 00 E1 49 82 C1		
000847		001669	9719.2	接收	0000060A	标准帧	数据帧	08	00 03 00 00 00 00 00	00	
000848	0	001669	9719.5	遷忆	0000070B	还准则	数据顺	08	01 03 00 00 00 00 00	00	
000849	U	001665	3(19. (0710. 0	接収	00000000	你准则	会现3括中风 考验+1日由よ	08	01 F4 00 E1 49 C2 C1	AA OO	
000850		001003	9720 2	東京	00000000	行使的	第21日中川 末時1日由古	08		00	
000852	ň	001669	3720 4	接版	00000700	标准帖	*************************************	08	01 64 00 81 48 02 01	7F	
000853		001669	3720.7	橡胶	0000060A	标准帧	封握巾齿	08	00 01 00 00 00 00 00	00	
000854		001669	9720. 9	接收	00000708	标准帧	数据帧	08	01 01 00 00 00 00 00		
000855		001669	9721.2	控版	00000706	十二、在市 社	北日日山	08	01 8B 00 E1 48 42 C1	9F	
000856		001001	121.4	邃收	0000060A	标准帧	数据响	08	00 02 00 00 00 00 00	00	
000857	0	001669	3721.7	援收	00000708	标准帧	發播帧	08	02 02 00 00 00 00 00	00	
000858	U 0	00100	1700 1	接旧	00000700	「正正明日	金钟书告纵回 **************	09	02 24 00 EU 47 62 L1	90 90	
000855		001660	1722.1	接收	00000100	行准帧	教理由品	08		00	
000861	õ	001669	1722 B	接收	00000708	标准帧	30101W	08	02 03 00 00 00 00 00	00	
000862	ŏ	001669	9722.9	接收	00000700	标准帧	数据响	08	01 FB 00 E1 47 C2 C6	AS	
000863		001669	9723.1	接收	0000070C	标准帧	数据帧	08	02 64 00 8B 48 C2 EB	7F	
000864		001669	3723.4	接收	0000060A	标准帧	數据响	08	00 00 00 00 00 00 00		
000865		001669	9723.6	接收	0000070B	标准帧	数据帧	08	01 00 00 00 00 00 00	00	
000866		001669	9723.8	接收	0000070C	标准帧	数据帧	08	01 49 00 89 4A 02 F5	9D	
000867	0	001669	3724.1	接收	0000060A	标准则	数据响	08	00 01 00 00 00 00 00	00	
就结	0	1001665	1744.0	- HARA	000000008	R1	:1006 T1:0	Ua	R2:0 T2:0 C1:	0.0% C2:0.0	% 008101

图 6 初步测试界面

4) 打开 SRR_Test 软件。USB2CAN 适配器连接 PC 机后, 雷达天线面(平整面)。

DAR

SRR_Test	*
D5m D5m D5m 除藏目标轨迹 D5m 除藏目标轨迹 週出 取消 電达配置 加索记录文件 「隐藏运动目标 砌值 0.5 m/s 208scan = 0Hz	*

图 8 CAR28T 测试界面

配置过程:

点击雷达配置,出现二级界面 RADAR_CONFIG,上图中雷达 ID 为 0,选择 Radar Output Type 为 SendCluster,勾选 Output Type Valid 复选框,最后保存设置, 点击 OK 按钮。

6)开始测试。测试界面如下图所示。

图 9 测试界面

如上图界面, 雷达检测到两个目标, x 为横向距离, y 为纵向距离, 原点左侧 为负, 右侧为正。

测试场所建议:务必在室外开阔场合测试 CAR28T。室内测试时,干扰较多, 会导致目标轨迹不连续。

7) 退出测试。

测试完成点击左下方退出按钮,关闭程序。

10 退出测试

4.4 修改雷达 ID

纳雷科技提供的《NSM Tools 管理工具》测试软件可查看并修改雷达 ID。首 先从纳雷客服获取纳雷科技毫米波雷达 NSM Tools 管理工具(上位机测试软件)、 使用手册、USBCAN 盒子与驱动。依据使用手册,安装与配置上位机测试软件。 1) 根据上节,连接雷达至电脑,打开毫米波雷达 NSM Tools 管理工具软件。选 择雷达型号为 CAR28T,连接设置选择为 CAN,点击下方【连接设备】按钮。如 下图所示。

图 11 NSM Tools 管理工具界面

2)点击<mark>雷达设置</mark>菜单栏,选择<mark>雷达 ID 修改</mark>,如下图。

NSM Tools v1.0.2	- X
系统设置 雷达设置 雷达搜索 雷达升级 帮助	
雷达型号 CAR28T ▼	目标显示区域
O UDP O COM O CAN O TCP	
连接方式	90
发送目标 VES v	80
车 速 25 km/h	70
连接设备	80
	50
	40
	30
	20
品牌 HIKVISION V IP地址 192.168.51.120	
用户名 admin 密 码 ********	
开启视频	-50 -40 -30 -20 -10 0 10 20 30 40 50
© 湖南纳雷科技有限公司	

图 12 选择雷达设置中的雷达 ID 修改子菜单

3) 点击获取 ID 按钮,即获取当前雷达的 ID,当前雷达的 ID 为 1,如下图。

- 图 13 获取当前雷达 ID
- 4) 修改当前雷达 ID 为 0。

11

图 14 修改当前雷达 ID

5)保存修改后的雷达 ID,在文本控件里输入需要配置的雷达 ID,如0,然后点击保存设置按钮,修改雷达 ID 成功。再次启动雷达时雷达 ID 为上次设置的ID。

图 15 修改雷达 ID 界面

点击**雷达 ID 修改**界面的"**x**"按钮,再点击 MSN Tools 管理工具软件右上角的 "**x**"按钮,退出软件。

测试场所建议:

务必在室外开阔场合测试 CAR28T。室内测试时,干扰较多,会导致目标轨 迹不连续。

4.5 产品在线固件升级

CAR28T 支持在线升级,客户购买产品后,如果产品程序需要升级,可以向 纳雷客服或纳雷官方网站获取纳雷毫米波雷达升级工具与升级程序,升级工具界 面如下图,该上位机软件使用方法请参考纳雷雷达升级工具使用手册。

NANORADAR M III N M	🧕 雷达升级工具	×
雷达类型(CAR	287 ,获取版本	
COM方式连接 CAN	以方式连接 WAN方式连接	
选择路径:		获取
■ 输入密码:		
选择雷达:		▼ 获取雷达ID
		升级固件

图 16 CAR28T 雷达升级工具界面

5 CAN 口数据解析

CAR28T 雷达支持 CAN 接口, CAN 总线通信网络符合 ISO11898-2 标准, 传输速率为 500K 比特/秒。CAR28T 向周边发射雷达信号,接收信号经过多步处理,能够获取目标组的轨迹信息。目标信息的相对速度和位置通过 CAN 接口传输。

CAR28T 总线消息定义如下表:

CAN	帧格式	基础消息ID	消息名	内容	消息源
1	CAN2.0A(11Bit)	0x200	RadarConfiguration	雷达配置	CAR28T
1	CAN2.0A(11Bit)	0x400	RadarFeedback	雷达回复	CAR28T
1	CAN2.0A(11Bit)	0x60A	RadarStatus	雷达状态输出	CAR28T
1	CAN2.0A(11Bit)	0x70B	TargetStatus	雷达目标状态	CAR28T
1	CAN2.0A(11Bit)	0x70C	TargerInformation	雷达目标信息	CAR28T

表 4 CAR28T 雷达帧消息定义

Note:

具体 ID 计算公式:每个雷达消息 ID = 雷达 ID * 0x10 + 基础消息 ID。由于 CAN 总线可以挂载多个设备,每个设备有自己的 ID。如上表中雷达 ID 默认为 0, 基础消息 ID 为 0x200、0x400、0x60A、0x70B、0x70C。若雷达 ID 配置成 1,则

其 Message ID 分别为 0x210, 0x410, 0x61A, 0x71B, 0x71C, 以此类推。

5.1 CAR28T 配置(Sensor Configuration)

CAR28T 雷达通过 Message ID0x200 配置雷达传感器, 雷达配置消息结构如下表。

Bit Byte	7	6	5	4	3	2	1	0
0		6	5	4	3	2	1	0
	r/w	msb		Data	Туре			Isb
1	15	14	13	12	11	10	9	8
1	msb							Isb
2	23	22	21	20	19	18	17	16
3	31	30	29	28	27	26	25	24
4	39	38	37	36 Parar	35 neter	34	33	32
5	47	46	45	44	43	42	41	40
6	55	54		52	51	50	49	48
7	63	62	61	60	59	58	57	56

表 5 雷达配置消息结构

雷达配置消息结构各字段描述如下表:

表 6 雷达配置消息结构描述

参数	起始位置	长度(bit)	定义
DataType	0	7	 1:雷达 ID 2:雷达版本 3:启动、停止目标信息输出 4:距离过滤 5:模式 6:雷达安装方向 7:目标输出选择 7e:内部测试使用
R/W	7	1	0:读取参数;1:写入参数
Parameter	8	56	根据 DataType 定义

不管是读取还是写入参数, CAR28T 都会回复一条消息, 该消息包含写入参

数的结果或者返回要读取的参数,RadarFeedback 定义了回复消息的格式。 对 CAR28T 配置时,针对不同 DataType, Parameter 的定义是不一样的,具体定 义如下:

1) 雷达 ID 配置

配置雷达 ID 帧格式如下表所示:

表 7 雷达 ID 配置格式							
参数	参数 起始位置		值	定义			
DataType	0	7	1	雷达 ID 配置			
R/W	7	1	-	0:读取参数 1:写λ 参数			
Parameter	8	4	0~15	ID_Number			
Reserved	16	48	-				

读取雷达ID, R/W为0, ID_Number 值无效; 写入雷达ID, R/W为1, ID_Number 值雷达ID 编号。

2) 获取雷达版本

获取雷达版本帧格式如下表所示:

参数	起始位置	长度	值	定义
DataType	0	7	2	获取雷达版本
R/W	7	1	-	0:读取参数;1:无效
Master Version	8	8	0~255	主版本号
Second Version	16	8	0~255	次版本号
Step Version	32	8	0~ 55	阶段版本号
Reserved	40	24	-	-

表 8 获取雷达版本格式

获取雷达版本为只读,获取雷达版本时,Master Version、Second Version、Step Version 不用填任何值,CAR28T 忽视这些值。当 CAR28T 收到获取雷达版本消息时,会在 0x400 雷达回复消息中将当前雷达版本信息填充这些字段。

3) 启动、停止目标信息输出

启动、停止雷达目标信息输出格式如下表所示:

参数	起始位置	长度	值	定义
DataType	0	7	3	启动、停止目标信息输出
R/W	7	1	-	0:读取参数;1:写入参数
Parameter	8	1		0:停止输出;1:启动输出
Reserved	9	55	-	-

表 9 启动/停止目标信息数据输出格式

4) 距离过滤

【保留】

5) 模式配置

CAR28T 可切换不同的模式来满足不同应用场景下需求,模式配置格式如下 表所示:

参数	起始位置	长度	值	定义
DataType	0	7	5	模式配置
R/W	7	1	-	0:读取参数; 1:写入参数
Domonator	0	0		0:BSD/LCA; 1:RCTA
Parameter	8	0		2:EAF; 3:FCTA
Reserved	16	48	-	-

表 10 模式配置格式

Note:

CAR28T 目前暂不支持 RCTA, EAF, FCTA 功能。

6) 雷达安装方向配置

CAR28T 安装方向影响算法中的角度校准, CAR28T 安装好以后需要配置雷达的安装方向字段,程序会根据安装方向进行校准。雷达安装方向配置格式如下表所示:

参数 起始位置 长度 值 定义 0 7 雷达安装方向 DataType 6 0:读取参数 R/W 7 1 _ 1:写入参数 0:正向; 1:反向 Parameter 8 1 9 Reserved 55

表 11 雷达安装方向配置格式

7) 目标输出选择

CAR28T 可以输出经过处理的目标数据(例如输出设定距离范围内的 目标数据),也可直接输出原始的目标数据(检测范围内的所有目标数据),目前 默认输出原始目标数据。目标输出选择格式如下表所示:

A 14 日你们出处并们A

参数	起始位置	长度	值	定义
DataType	0	7	7	目标输出选择
R/W	7	1	-	0:读取参数; 1:写入参数
Parameter	8	1		0:处理后的目标数据 1:原始目标数据
Reserved	9	55	-	-

8) 内部测试使用

【保留】

9) 保存参数

需要保存已配置的参数时,需要执行保存参数命令,重新启动后,上次配置 已经生效,不需重新配置;否则下次启动后需要重新进行配置。保存参数格式(即 0xFF000000000000000)如下表所示:

表 13 保存参数格式

参数	起始位置	长度	值	定义
DataType	0	7	7f	保存参数
R/W	7	1	1	写入参数
Reserved	8	56	-	-

5.2 雷达返回(Sensor Feedback)

每次上位机或其它 MCU 给 CAR28T 发送配置信号后, CAR28T 将立即返回 执行结果, 雷达回复的格式如下表所示。RadarFeedback 与 RadarConfiguration 只 有 Bit7 位不同, RadarConfiguration 中 Bit7 定义为 R/W, RadarFeedback 定义为配 置的执行的结果(0:配置失败, 1:配置成功)。Parameter 字段 RadarConfiguration 用于写入参数, RadarFeedback 中用于返回当前该参数的值。

Bit Byte	7	6	5	4	3	2	1	0
0	7 Pocult	6	5	4	3	2	1	0
	rtesuit	msb		Data	Туре			lsb
1	15	14	13	12	11	10	9	8
	msb							lsb
2	23	22	21	20	19	18	17	16
3	31	30	29	28	27	26	25	24
4	39	38	37	36 Parar	35 neter	34	33	32
5	47	46	45	44	43	42	41	40
6	55	54	53	52	51		49	48
7	63	62	61	60	59	58	57	56

表 14 雷达返回消息结构

雷达回复各字段描述定义如下表:

表 15 雷达回复各字段描述

参数	起始位置	长度	定义
DataType	0	7	1:雷达 ID; 2:雷达版本 3:启动、停止目标信息输出 4:距离过滤; 5:模式 6:雷达安装方向 7:目标输出选择 7e:内部测试使用 7f:保存参数
Result	7	1	0:配置失败;1:配置成功
Parameter	8	56	根据 DataType 定义

5.3 雷达状态信息(Radar Status)

消息 0x60A 包含雷达的状态信息,雷达配置消息结构如下表所示:

Bit Byte	7	6	5	4	3	2	1	0
0								
	msb	Radar_	Mode	lsb	msb	Ra	dar_ID	lsb
1	15	14	13	12	11	10	9	8
1							msb Radar_F	collCount _{isb}
	23	22	21	20	19	18	17	16
2								
	31	30	29	28	27	26	25	24
3								
	39	38	37	36	35	34	33	32
4								
	47	46	45	44	43	42	41	40
5								
	55	54	53	52	51	50	49	48
6								
	63	62	61	60	59	58	57	56
7							Mount_Dir	Output_Type

表 16 雷达状态信息消息结构(0x60A)

雷达状态消息描述各字段描述如下表所示:

表 17 雷达状态消息描述 (0x60A)

参数	起始位置	长度	取值范围
Radar_ID	0	4	0~15
Padar Mada	Λ	4	0:BSD/LCA; 1:RCTA
Kauai_Woue	4	4	2:EAF; 3:FCTA
Radar_RollCount	8	2	0~3
Radar_Output_Type	56	1	0:Processed;1:Origin
Radar_Mount_Dir	57	1	0:正向; 1:反向

Note:

CAR28T 目前暂不支持 RCTA, EAF, FCTA 功能。

5.4 目标输出状态(Target Status)

CAR28T 系统目标输出状态数据报文格式如下表所示,其中 NoOfCluster 表示检测到的目标个数,RollCount 的值在 0-1-2-3-0-1-2-3……之间连续循环。当上 位机或者外接 MCU 不能及时处理 CAR28T 传感器输出数据时,会导致接收的 RollCount 值不连续。这时应该寻找更快的搬移处理方法,来解决此问题。

Bit Byte	7	6	5	4	3	2	1	0
0	7 msb			4 NoOfClus	3 ster			() Isb
1	15	14	13	12	11	10	9 ClusterSt	8 RollCount Isb
2	23	22	21	20	19	18	17	16
3	31	30	29	28	27	26	25	24
4	39	38	37	36	35	34	33	32
5	47	46	45	44	43	42	41	40
6	55	54	53	52	51	50	49	48
7	63	62	61	60	59	58	57	56

表 18 目标状态(0x70B)

目标状态各字段描述如下表所示:

表 19 目标状态描述 (0x70B)

参数	起始位置	长度	取值范围
NoOfCluster	0	8	0~255
ClusterSt_RollCount	8	2	0~3

5.5 目标输出信息(Target Info)

CAR28T 目标输出信息报文格式如下表所示:

表 20 目标消息结构(0x70C)

Bit Byte	7	6	5	4	3	2	1	0
0	7 msb	6		4 Cluster	_Index		1	() Isb
1	15 msb			12 Cluster_I	11 RCSValue		9	8
2	23 mso	22	21	20 Cluster_Range	19 [15:8]	18	17	16
3				28 Cluster_Range	27 [7:0]			24 Isb
4	39	38 msb	37	36 CI	35 uster_Azimuth	34	33	32 Isb
5	47 Cluster1_R	46 ollCount Isb	45	44	43	42 msb	41 Cluster_Vrel[1	40
6	55	54	53	52 Cluster	51 v_Vrel[7:0]	50	49	48 Isb
7	63	62	61	60	59	58	57	56

消息 0x70C 包含目标的距离、角度、速度等信息。当雷达传感器正常 工作且检测到目标时,在 CAR28T 系统状态报文之后会出现目标输出状态报文, 最后出现目标输出信息报文。

目标消息各字段描述如下表所示:

表	21	目标消息描述	(0x70C)

参数	起始位置	长度	计算方法	取值范围
Cluster_Index	0	8		0~127
Cluster_RCSValue	8	8	Val*0.5-50	-50~30
Cluster_Range	16	16	Val*0.01	0~655
Cluster_Azimuth	32	7	Val*2-90	-90~90
Cluster_Vrel	48	11	Val*0.05-35	-35~35
Cluster1_RollCount	46	2		0~3

Note:

表中各字段的数值并非目标信息的真实值,真实数值需要经过如下公式计算获得:

-	Index	=	IndexValue	//	目标 ID
---	-------	---	------------	----	-------

- Rcs = RcsValue*0.5 50 // 出厂测试保留值,不做输出
- Range = (RangeHValue*256 + RangeLValue)*0.01

 // 雷达输出的原始数据单位为 cm,转换后目标距离的单位为米

 Azimuth = AzimuthValue*2-90 // 目标方位角
- RollCount = RollCountValue // 计数位
- Verl = (VrelHValue*256 + VrelLValue) *0.05-35 // 目标速度,单位 m/s
- SNR = Value-127 // 出厂测试保留值,不做输出

通过这些计算可以得到目标反射截面积 Rcs,目标距离 Range,目标速度 Verl,目标方位角 Azimuth,信噪比 SNR,从而准确的检测出目标。

Note:

目标速度为相对运动的径向速度。目标靠近雷达传感器时,目标速度值(Verl) 为负数;目标远离雷达传感器时,目标速度值(Verl)为正数。

6 数据解析示例

以 Message ID 为目标输出信息(Target Info)为例,有一帧 Target Info 数据报

文如下:

Message ID:

0x70C

Data Payload:

0x01 0xC8 0x07 0xD0 0x32 0x02 0xEE 0x96

Interpretation:

Message ID = $0x70C$					
Data Payloa	ad =	0x01 0xC8 0x07 0xD0 0x32 0x02 0xEE 0x96			
Data Payloa	id 名	▶字段解析如下:			
Index	=	1			
Rcs	=	0xC8*0.5 - 50 = 50			
Range	=	(0x07*0x100 +0xD0)*0.01 = 20 //单位:m			
Azimuth	=	0x32*2-90 = 10			
Rsvd1	=	0			
RollCount	=	(0x0 & 0xE0) >> 5 = 0			
Verl	=	(0x02*0x100+0xEE) *0.05-35 = 2.5//单位, m/s			
SNR	=	0x96 - 127 = 23			
Note:					
用户需要自行编程解析传感器输出数据。0x2AF5 十六进制换算成					
10 进制: 10997=5*16^0+F*16^1+A*16^2+2*16^3。					

7 安装及风险须知

7.1 安装原则

传感器安装原则:

- 1、 安装时尽量远离车身内的信号天线;
- 2、 安装时远离大的用电设备频繁启动的位置;
- 3、 远离马达执行器与驱动器。

安装位置:

CAR28T 雷达传感器建议安装在车辆保险杠位置。

同天线罩一样,保险杠的材质同样会对雷达性能产生较大的影响,本质上保 险杠在三个方面影响雷达性能,第一是雷达波不能完全透过天线罩使雷达有效辐 射功率减小,包括反射损耗和介质损耗,第二是雷达天线波束畸变使得雷达作用 区域发生变化,可能导致雷达受后向目标干扰,第三是天线罩使雷达驻波变差。 雷达天线罩会降低雷达探测灵敏度和覆盖范围。

在后保险杠安装时,尽量遵守以下原则:

1、选择曲面光滑的区域;

2、避开拐角或厚度变化的区域;

3、避开镀铬或任何其他附加"特殊装饰形状设计"区域;

4、禁止在雷达天线面打胶。

7.2 使用风险须知

CAR28T 专为汽车应用领域而开发,使用者需要具备相关的技术知识。产品只能让那些具备相关培训的人员使用。使用者在发现产品的安全缺陷时,应及时通知纳雷科技公司客服人员。

♦ 当安装传感器时,确保天线罩表面没有冰粒或者水雾。

◆ 不能在传感器位置附近进行焊接活动。

◆ 传感器只能使用潮湿、无绒的棉布擦拭表面灰尘,绝不能刮擦损害传感器表面。

◆ 设备在投入使用之前需要进行日常检查。

8 常见问题(FAQ)

1) CAR28T 毫米波雷达安装在车上时输出的 ID 是否一样?

每个雷达 ID 都不一样,同时 ID 和安装位置没有关系; ID 从 CAN message ID 读出,比如 0x70C 雷达 ID 是 0,则 0x73C 的雷达 ID 是 3。同一台车上的雷达 ID 不 会相同,但不同车同一个位置的雷达 ID 是相同的,而 ID 可以通过程序进行配置。

2) CAR28T 电源电压范围?

CAR28T 电源电压范围宽(6~32V DC)。电压越大,功率损耗越大。在工作时如果 仅有电压满足条件,电流不足,也会导致板子无法正常工作。

3) 关于我司毫米波雷达辅助驾驶解决方案?

我司主推的辅助驾驶方案是目前业界主流的高级辅助驾驶方案。首先是硬件配置, 一个长距离雷达(CAR150)加四个短距离雷达(CAR28T),构成整个硬件基础。其次还 需要相关视觉等多传感器配合,对信息的提取,包括目标检测位置、速度、角度 等信息。信息提取以后要与运动目标跟随算法、地图信息进行数据的高度融合。 最后构成对车辆的控制,需要进行控制算法与车底层功能控制来实现

9 参考文献

- [1] CAR28T 毫米波雷达白皮书
- [2] 纳雷科技毫米波雷达 MSN Tools 管理系统使用手册
- [3] 纳雷雷达升级工具使用手册

湖南纳雷科技 长沙高新区文轩路 27 号 麓谷企业广场 B7 栋 Tel.:0731-88939916E-Mail:sales@nanoradar.cnURL:www.nanoradar.cn

